Ir al contenido principal

TRIGONOMETRIA


Trigonometría


Te explicamos qué es la trigonometría, un poco de historia sobre esta rama de las matemáticas y los conceptos más importantes que utiliza.


La trigonometría es utilizada donde se requiera medir con precisión.

¿Qué es la Trigonometría?


La trigonometría es, atendiendo al significado etimológico de la palabra, la medición de los triángulos (del griego trigono y metron). La trigonometría forma parte de la ciencia matemática y se encarga de estudiar las razones trigonométricas de seno, coseno, tangente, cotangente, secante y cosecante.

La trigonometría es utilizada donde se requiera medir con precisión y se aplica a la geometría, es especial al estudio de las esferas dentro de la geometría espacial. Entre los usos más comunes de la trigonometría se encuentran la medición de distancias entre estrellas o entre puntos geográficos.



Un poco de historia sobre la trigonométrica


Los egipcios utilizaban la trigonometría de forma primitiva para construir sus pirámides.

Ya los estudiosos del antiguo Egipto y Babilonia estaban al tanto de los teoremas acerca de la medición de los triángulos semejantes y las proporciones de sus lados. Se sabe que los astrónomos de Babilonia registraban los movimientos de los planetas y los eclipses. Los egipcios, dos mil años antes de Cristo, ya utilizaban la trigonometría en una forma primitiva para construir sus pirámides.

Los fundamentos de la actual trigonometría se desarrollaron en la Antigua Grecia, pero además en la India y en manos de estudiosos musulmanes. Estudiosos de la trigonometría antigua fueron Hiparco de Nicea, Arybhata, Varahamihira, Brahmagupta, Abu’l-Wafa, entre otros.

El primer uso de la función “seno” se remonta al siglo VIII a. C. en la India. Quien introdujo el tratamiento analítico de la trigonometría en Europa fue Leonhard Euler. Se conocieron entonces como las “fórmulas de Euler”.

Partieron de la correspondencia que existe entre la longitud de los lados de un triángulo a partir de que mantienen la misma proporción. Si un triángulo es semejante entonces la relación entre la hipotenusa y un cateto es constante. Si observamos que una hipotenusa posee en doble de longitud, entonces lo serán los catetos.


Conceptos más importantes de la trigonométrica


El coseno se obtiene de la relación entre la longitud del cateto adyacente y la hipotenusa.

Para medir ángulos se utilizan tres unidades:

  • El radián. Que se utiliza más que nada en matemáticas.
  • El grado sexagesimal. Más utilizado en la vida cotidiana.
  • El sistema decimal. Utilizado en topografía y en la construcción.

La trigonometría se define en determinadas funciones que se aplican en diversos campos para medir la relación entre los lados y ángulos de un triángulo rectángulo o una circunferencia. Estas funciones son las de seno, coseno y tangente. También pueden realizarse razones trigonométricas inversas, a saber: cotangente, secante y cosecante.

Para poder realizar estas operaciones es necesario tener en cuenta ciertos conceptos. El lado opuesto al ángulo recto se denomina hipotenusa (h) que es el lado más largo del triángulo. El cateto opuesto es el que se encuentra del lado contrario al ángulo en cuestión mientras que llamamos adyacente al que se encuentra al lado.

Para obtener el seno de un ángulo determinado se debe dividir la longitud del cateto opuesto y el de la hipotenusa (es decir cateto opuesto sobre hipotenusa: a/h).

El coseno se obtiene a partir de la relación entre la longitud del cateto adyacente y la hipotenusa (cateto adyacente sobre hipotenusa: a/h).

Para obtener la tangente se divide la longitud de ambos catetos (es decir se realiza la división: o/a).

Para la función de cotangente se divide la longitud del cateto adyacente por el opuesto (entendido como: a/o).

Para la función secante se relaciona la longitud de la hipotenusa sobre el cateto adyacente (es decir: h/a).

Finalmente para determinar la función cosecante se divide la longitud de la hipotenusa sobre el cateto opuesto (obteniendo así: h/o).

VIDEO SOBRE LA TRIGONOMETRIA: 



Comentarios

Publicar un comentario

Entradas más populares de este blog

LA PROBABILIDAD

Qué es la probabilidad Una de las características más especiales de los seres humanos, que nos diferencia del resto de animales, es nuestra capacidad de “predicción”, de anticiparnos a los acontecimientos que van a ocurrir. A veces fallamos, pero otras muchas no. Esta capacidad nos ha permitido llegar hasta donde estamos hoy, pudiendo predecir tanto peligros como oportunidades. Piénsalo, nuestros antepasado que eran capaces de predecir el ataque de un depredador fueron los que sobrevivieron. Ahora, decenas de miles de años después hemos dado un paso más y nos preguntamos ¿Qué es la probabilidad? La probabilidad es el cálculo matemático que evalúa las posibilidades que existen de que una cosa suceda cuando interviene el azar. Vamos a plantear un par de ejemplos, porque la probabilidad -como tantos conceptos en matemáticas, es una construcción abstracta, pero con ejemplos se entiende mejor. Si giras la siguiente ruleta, ¿en qué números se puede parar? La ruleta se puede parar en un númer

¿CUALES SON LAS RAMAS DE LA MATEMATICA?

Las Matemáticas son una ciencia formal en la que, partiendo de un significado que damos a letras, símbolos y signos, somos capaces de resolver problemas. Veamos las disciplinas en las que se divide. ¿Cuáles son las principales disciplinas dentro de las Matemáticas? Las Matemáticas quedan definidas como la ciencia formal que, partiendo de axiomas (proposiciones incuestionables sobre las que descansan otras proposiciones deducidas a través de ellas) y utilizando un razonamiento lógico, estudia las relaciones entre conceptos abstractos como números, letras, figuras geométricas y símbolos. Esta ciencia formal traduce todo lo que nos rodea a números. Y estos números son los que nos permiten dar cohesión a nuestra existencia, permitiéndonos sentirnos seguros dentro del caos del Universo. A lo largo de la historia, las Matemáticas han evolucionado mucho y, a día de hoy, existen distintas disciplinas dentro de ellas que comentaremos a continuación. 1. Álgebra El álgebra es la rama de las Matem

BINOMIO CUADRADO PERFECTO

Definición de un binomio cuadrado perfecto Un binomio cuadrado perfecto es un trinomio que cuando se factoriza te da el cuadrado de un binomio. Por ejemplo, el trinomio x ^ 2 + 2 xy + y ^ 2 es un binomio cuadrado perfecto porque factoriza a ( x + y ) ^ 2. ¿Notas cómo el trinomio en forma factorizada es el cuadrado de un binomio? Además, observe el primer y último término del trinomio. ¿Notas algo interesante sobre ellos? Ambos términos son cuadrados perfectos. Esa es una indicación de que el trinomio con el que está tratando puede ser un binomio cuadrado perfecto. Aquí hay algunos ejemplos más de trinomios de casos especiales que son binomios cuadrados perfectos. ¿Ves un patrón en estos trinomios y sus respectivas formas factorizadas? ¿Ves cómo estos son trinomios especiales? Esto es lo que los distingue de otros trinomios. De hecho, facilita la factorización si sabe que son un binomio cuadrado perfecto antes de empezar a factorizar. Una forma fácil de comprobar si un trinomio es un bi